

Welcome to "Making ENERGY STAR Appeal to the Builder's Bottom Line"

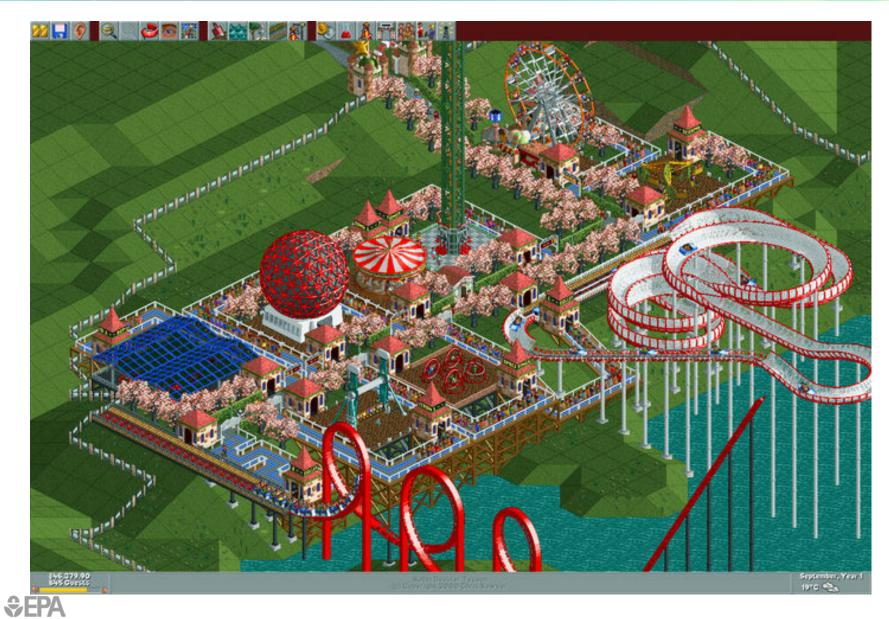
Hillary Tipton, ICF

Elliot Seibert, EPA

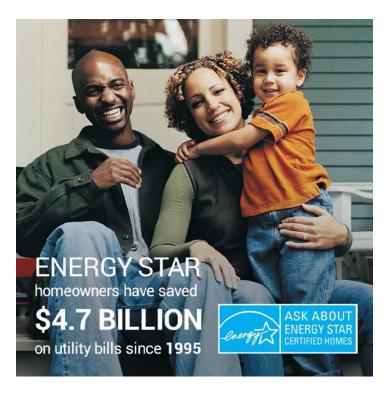
Michelle Yuan, ICF

€PA

Part I Dollars and Sense: Cost-Effective Modeling with ENERGY STAR Homes

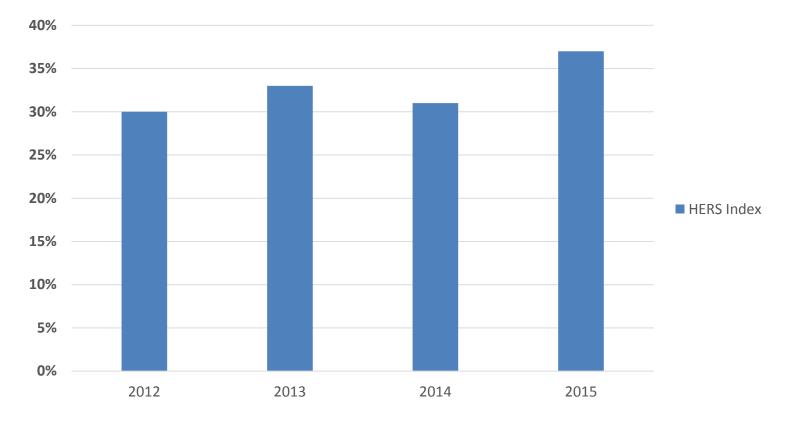

There's good design...

and poor design...


What are the benefits of an ENEGRY STAR home?

- Consumer awareness and marketing
- Enhanced QA
- Increased incentives, in some cases

Consumer Awareness of ENERGY STAR


- The ENERGY STAR brand is more recognizable than HERS and other energy rating programs
 - The ENERGY STAR label is recognized by 87% of consumers
 - 92% say that it influences their purchasing decisions
- But what about its marketability to **builders**?

Market penetration of HERS Ratings

- Compared to virtually every other subcontractor, Raters are the lowest cost subcontractor
- But there is still a long way to go for the HERS Index to become the norm when building a new home on the U.S.

Enhanced QA

- Mandatory measures

 i.e., air sealing
- Additional diagnostic testing
 HVAC Quality Install (QI)
- The HERS Index does not account for everything: for example, proper equipment sizing has benefits that are not reflected in the HERS score.

ENERGY STAR is more achievable than you think

- Current national average HERS Index is around 63, while the average HERS Index for a home to meet ENERGY STAR Version 3.1 ranges from 60 to 70.
- Many HERS-only homes are at or near ENERGY STAR performance levels.
- We're going to show you three homes inspired by realworld examples, where we'll be able to achieve ENERGY STAR performance level while cutting costs.

ENERGY STAR. The simple choice for energy efficiency.

Some caveats off the batt:

- Flexibility is key: we offer suggestions and examples, but you should apply your experience and organization's practices
- We are showing screenshots from REM/Rate because it is widely-used rating software, but similar cost-saving techniques can be used in other software.

House 1: "The Alamo"

House Characteristics:

- Built in San Antonio, TX Climate Zone 2
- 2715 sqft., 4 bedrooms
- 2-story detached, slab-on-grade
- HERS Index = 64
- ENERGY STAR v3.1 Target = 62

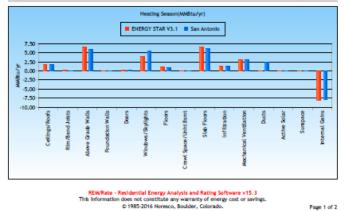
Challenges

• Can't move ducts from unconditioned attic

Let's make some costs cuts!

Method: Identify Focus Areas

- Use software ENERGY STAR comparison reports
- Look for:
 - Areas where home under-performs vs. ENERGY STAR
 - Areas where home is performing better that might not be costeffective


Comparison Reports

Comparison Reports

Component Loads

Property , TX	Organization Elliot Selbert	HERS Projected Rating 2017-03-01			
Weather:San Antonio, TX San Antonio CZ2 Step 0.blg	Builder	ID:			
Heating Season(MMBtu/yr)	ENERGY STAR V3.1		San Antonio	Savings	%Saved
Cellings/Roofs	1.7		1.7	0.0	2.0%
Rim/Band Joists	0.2		0.1	0.0	22.9%
Above Grade Walls	6.5		6.0	0.5	7.8%
Foundation Walls	0.0		0.0		
Doors	0.3		0.3	-0.0	-9.0%
Windows/Skylights	4.0		5.5	-1.6	-39.9%
Floors	1.1		0.8	0.2	20.2%
Crawl Space/Unht Bsmt	0.0		0.0		
Slab Floors	6.5		6.1	0.4	6.5%
Infiltration	1.4		1.4	0.0	0.2%
Mechanical Ventilation	3.0		3.0	0.0	0.2%
Ducts	0.0		2.3	-2.3	
Active Solar	0.0		0.0		
Sunspace	0.0		0.0		
Internal Gains	-8.0		-7.9	-0.1	-0.7%
Total	16.5		19.3	-2.8	-16.6%

Performance Report

Property , TX	Organization Elliot Seibert	HERS Projected Rating		
Weather:San Antonio, TX San Antonio CZ2 Step 0.blg	Builder	2017-03-01 Rater ID:		
			Con Antonio	

Annual Load(MMBtu/yr)	ENERGY STAR V3.1	San Antonio	Savings	%Saved
Heating	16.5	19.3	-2.8	-16.6%
Cooling	36.2	47.3	-11.1	-30.68
Water Heating	11.9	12.2	-0.3	-2.3%
Water Heating w/out Tank Loss	8.1	8.1	-0.0	-0.18
Annual Consumption(MMBtu/yr)	1			
Heating	21.3	21.6	-0.4	-1.78
Cooling	9.6	10.3	-0.7	-7.38
Water Heating	14.9	15.2	-0.3	-2.3%
Lights & Appliances	24.8	25.7	-1.0	-3.8%
Photovoltaics	-0.0	-0.0		
Total	70.5	72.9	-2.4	-3.4%
Annual Energy Cost (\$/yr) Heating	177	182	-5	-2.79
Cooling	337	182	-25	-7.38
Water Heating	113	116		-2.38
Lights & Appliances	871	905	-33	-3.89
Photovoltaics	-0	-0		
Service Charges	120	120		
Total	1619	1684	-65	-4.0%
Design Loads (kBtu/hr)				
Space Heating	26.4	40.5	-14.1	-53.5%
Space Cooling	24.9	39.1	-14.2	-56.9%
Utility Rates				

Electricity 2017 TX Electric***** Gas 2017 TX Gas*****

REWRate - Residential Energy Analysis and Rating Software v15.3 This information does not constitute any warranty of energy cost or savings. © 1985-2016 Noresco, Boulder, Colorado.

Areas of Focus for "The Alamo"

Energy Features	ENERGY STAR V3.1	San Antonio
Ceiling w/Attic	N/A U=0.030	R-38 Blown, Attic******** U=0.026
Sealed Attic	None	
Vaulted Ceiling	None	
Above Grade Wall	N/A U=0.082	R-15********* U=0.076
Foundation Walls (Cond)	None	
Foundation Walls (Uncond)	None	
Doors	N/A U=0.170	Steel-urth w/brk U=0.187
Windows	UDRH Std U=0.400	0.53/0.35 U=0.530
Floors	N/A U=0.064	R-19********* U=0.050
Slab Floors	N/A U=0.365	Uninsulated U=0.365
Infiltration	Htg: 4.00 Clg: 4.00 ACH50	
Infiltration Measure	Blower door test	
Mechanical Ventilation	Supply Only: 69 cfm, 24.6 watts.	Exhaust Only: 69 cfm, 38.2 watts.
Interior Mass	None	
Mechanical Equipment 1	Heating: Fuel-fired air distribution, 50.1 kBtuh, 80.0 AFUE.	Heating: Fuel-fired air distribution, 64.0 kBtuh, 92.0 AFUE.
Mechanical Equipment 2	Cooling: Air conditioner, 49.5 kBtuh, 15.0 SEER.	Cooling: Air conditioner, 60.0 kBtuh, 19.0 SEER.
Mechanical Equipment 3	Water Heating: Conventional, Gas, 0.61 EF.	Water Heating: Conventional, Gas, 0.60 EF.
Programmable Thermostat	Heat=Yes; Cool=Yes	
Ducts	UninsulatedConditioned space	R-8.0Attic, exposed
Duct Leakage to Outside	0.00 CFM25 / CFA	0.04 CFM25 / CFA

1) Equipment Efficiency

Before: High-End AC + Furnace

- 19 SEER
- 92 AFUE

After: Mid-Range AC + Basic Furnace

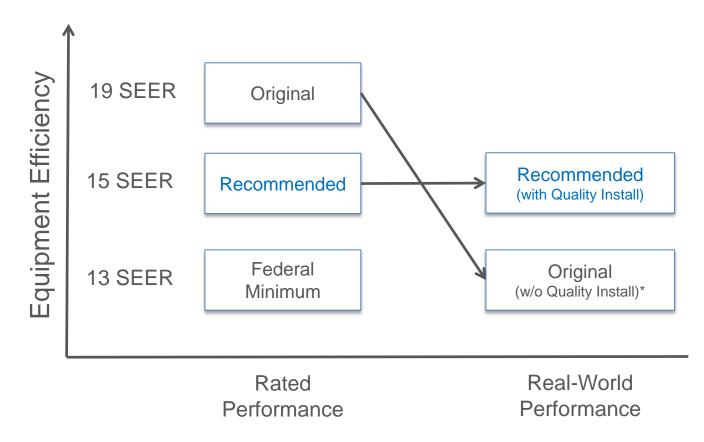
- 15 SEER
- 80 AFUE

_ Με	Mechanical Equipment Properties Summary			
#	# Type HtgEff ClgEff			
1	80AFUE Gas Furn 64k	80.0 AFUE		
2	15SEER A/C 5 ton		15.0 SEER	

ENERGY STAF

HERS Score

Programs	
V3.0 ENERGY	Fails
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	72


Change: +8 Target: 62

Measure	\$2,100 savings
Cumulative	\$2,100

1) Equipment Efficiency

*Per NIST study at:

https://www.nist.gov/news-events/news/2014/11/underperforming-energy-efficiency-hvac-equipment-suffersdue-poor

2) Whole-House Ventilation

Before: 36 Watt Bath Fan

Mechanical Ventilation System for IAQ		
Туре:	Exhaust Only	•
Sensible Recovery Effic	iency (%):	0.0
Total Recovery Efficient	су (%):	0.0
Rate (cfm):		65
Hours/Day:		24.0
Fan watts:		36.0

After: 10 Watt Bath Fan

Fan watts:	10.0
------------	------

ENERGY STAF

HERS Score

Programs	
V3.0 ENERGY	Fails
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	71

Change: -1 Target: 62

Measure	\$50 cost
Cumulative	\$2,050

3) Lighting

Before: Not taking credit for garage/exterior

Lighting CFL (%):	100.0	Interior	Exterior Fixtures(%):	0.0
Pin-Based FL (%):	0.0	Fixtures	Garage Fixtures(%):	0.0

After: 100% qualifying throughout

 Note that outdoor fixtures on a photocell also qualify

🗆 Lighting —			:
CFL (%):	100.0	Interior	Exterior Fixtures(%): 100.0
Pin-Based FL (%):	0.0	Fixtures	Garage Fixtures(%): 100.0

HERS Score

Programs	
V3.0 ENERGY	Fails
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	70

Change: -1 Target: 62

4) Windows

Before: U-0.53, SHGC-0.35

Туре: 0.53/0.35

•

After: U-0.40, SHGC-0.25

ENERGY STAR

HERS Score

Programs		
V3.0 ENERGY	Passes	
V3.0* ENERG	Passes	
V3.1 ENERGY	Fails	
Tax Credit	Fails	
DOE Zero Ene	Fails	
HERS Index	66	
C 1		

Change: -4 Target: 62

Measure	\$500 cost
Cumulative	\$1,510

5) Radiant Barrier

Before: No Radiant Barrier

Roof Properties (optional inputs)		
Exterior Color:	Medium 💌	Clay or Concrete Roofing Tiles:	No 💌
Radiant Barrier:	No 💌	Sub-Tile Ventilation Present:	No 💌

After: Radiant Barrier Installed

Roof Properties (c	ptional inputs)—				
Exterior Color:	Medium	•	Clay or Concrete Roofing Tiles:	No	•
Radiant Barrier:	Yes 💌		Sub-Tile Ventilation Present:	No	•

ENERGY STAI

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Passes
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	63

Change: -3 Target: 62

Measure	\$1,000 cost
Cumulative	\$510

6) Water Heater

Before: 0.60 EF Gas Tank

	Mechanical Equipment Properties			
Library Type: Water Heating		-		
Equipment:		40 gal. 0.60EF Gas	-	
-		Conditioned area	•	

After: 0.67 EF Gas Tank

• ENERGY STAR-qualified water heater

	Mechanical Equipment Properties			
Library Type:		Water Heating	-	
Equipment:		40 gal. 0.67EF Gas	•	
Location:		Garage or open crawl space	•	

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Passes
V3.1 ENERGY	Passes
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	62

Change: **-1** Target: 62

Measure	\$125 cost
Cumulative	\$385

House 2: "The Chesapeake"

House Characteristics:

- Built in Annapolis, MD Climate Zone 4
- 2322 sqft., 3 bedrooms
- 3-story townhome, end unit
- HERS Index = 76
- ENERGY STAR v3.1 Target = 67

Challenges:

• 50% more window area than baseline

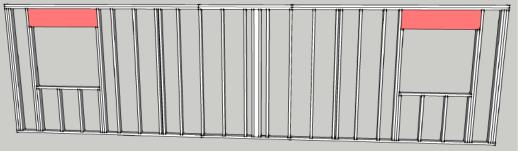
Let's see what we can do!

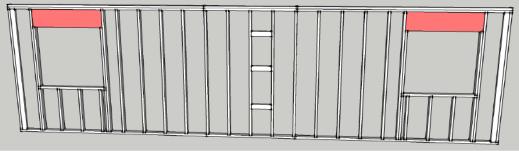
Before: R-3 Continuous + R-15 Batt

 ENERGY STAR only requires IECC 2009 level as a mandatory minimum (R-13)

After: R-15 Batt + advanced framing

 Meets local 2012 code via UA alternative path (better ceiling and windows)


ENERGY STA


Standard Framing = 23% framing factor

30' Long by 8' High 2x4 16" OC Standard Wall with Two Windows (4'-1" x 3'-8.5")

Advanced Framing = 18% framing factor*

30' Long by 8' High 2x4 16" OC ENERGY STAR Wall with Two Windows (4'-1" x 3'-8.5")

*Per Cost & Savings Estimates at:

https://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/EstimatedCostandSavings.pdf

Before: R-3 Continuous + R-15 Batt

• ENERGY STAR only requires IECC 2009 level as a mandatory minimum (R-13)

After: R-15 Batt + advanced framing

- Meets code via UA alternative path (better ceiling and windows)
- Framing factor = 19%

Continuous Insulation R-Value:	0.0	Stud Spacing (in oc):	16.0
Frame Cavity Insulation R-Value:	15.0	Stud Width (in):	1.5
Cavity Insulation Thickness (in):	3.5	Stud Depth (in):	3.5
Cavity Insulation Grade:	I -	Framing Factor:	0.1900
Block Cavity Insulation R-Value:	0.0	Use Default 🔲	

ENERGY STA

HERS Score

Ξ	Programs	
	V3.0 ENERGY	Passes
	V3.0* ENERG	Passes
	V3.1 ENERGY	Fails
	Tax Credit	Fails
	DOE Zero Ene	Fails
	HERS Index	77

Change: **+1** Target: 67

2) Lighting

Before: Not taking credit for garage/exterior

100.0	Interior	Exterior Fixtures(%): 0.0
0.0	Fixtures	Garage Fixtures(%): 0.0
	100.0	100.0 0.0 Interior Fixtures

After: 100% qualifying throughout

 Note that outdoor fixtures on a photocell also qualify

Lighting CFL (%):	100.0	Interior	Exterior Fixtures(%): 100.0
Pin-Based FL (%):	0.0	Fixtures	Garage Fixtures(%): 100.0

ENERGY STA

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Passes
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	76
	V3.0 ENERGY V3.0* ENERG V3.1 ENERGY Tax Credit DOE Zero Ene

Change: -1 Target: 67

3) Infiltration

Before: 5 ACH50

 After reviewing historic scores, end-units consistently performed 30% better

After: 3 ACH50

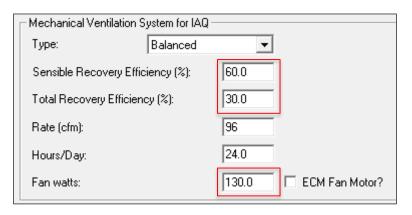
Whole House Infiltration				
Measurement Type:	Blower door te	st 🔻	•	
Heating Season Infiltration	on Value:	3.00	ACH @ 50 Pascals	_
Cooling Season Infiltratio	n Value:	3.00	Ach @ So Pascals	

ENERGY STAI

HERS Score

Ξ	Programs				
	V3.0 ENERGY	Passes			
	V3.0* ENERG	Passes			
	V3.1 ENERGY	Fails			
	Tax Credit	Fails			
	DOE Zero Ene	Fails			
	HERS Index	73			

Change: -3 Target: 67


Measure	No cost
Cumulative	\$3,160

4) Whole-House Ventilation

Before: Exhaust-only bath fan

After: Upgrade to ERV

HERS Score

-	Programs	
	V3.0 ENERGY	Passes
	V3.0* ENERG	Passes
	V3.1 ENERGY	Fails
	Tax Credit	Fails
	DOE Zero Ene	Fails
	HERS Index	68

Change: -5 Target: 67

Measure	\$1500 cost
Cumulative	\$1,660

5) Low-Flow Water Fixtures

Before: No credit taken for water fixtures

IW Efficiencies				
All bath faucets & showers <= 2 gpm				
All DHW pipes fully insula	ited >= R-3			
Plumbing Design (Enter plan view rectangular distance)				
Recirculation:	None (standard system)	•		
Farthest fixture to DHW heater (ft): 95				
autocalc vertical, for conditioned floors (ft): + 10				
autocalc vertical, for uncond. bsmt (ft): + 0				
TOTAL Pipelength for longest DHW run (ft): 105				

After: 2 gpm bath faucets and showers

DHW Efficiencies Image: All bath faucets & showers <= 2 gpm	L		Efficiencies
All bath faucets & showers <= 2 gpm	l	DITW	Lindendes
			All bath faucets & showers <= 2 gpm

ENERGY STA

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Passes
V3.1 ENERGY	Passes
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	67
	V3.0 ENERGY V3.0* ENERG V3.1 ENERGY Tax Credit DOE Zero Ene

Change: -1 Target: 67

House 3: "The Packard"

House Characteristics:

- Built in Detroit, MI Climate Zone 5
- 2240 sqft., 3 bedrooms
- 1-story detached, conditioned basement
- HERS Index = 66
- ENERGY STAR v3.1 Target = 60

Challenges:

• High infiltration (6 ACH50 vs. 3 in reference home)

Let's go!

Before: Flash & Batt

Wall Type Name:	R-20 Flash	+ Batt*		
Wall Construction:	Standard Wood Frame		•	
Continuous Insulation	n R-Value:	3.0	Stud Spacing (in oc):	16.0
Frame Cavity Insulati	ion R-Value:	17.0	Stud Width (in):	1.5
Cavity Insulation Thi	ckness (in):	5.5	Stud Depth (in):	5.5

After: R-20 Batt + advanced framing

Wall Type Name:	R-20*			
Wall Construction:	Standard W	/ood Frame	•	
Continuous Insulation R-Value:		0.0	Stud Spacing (in oc):	16.0
Frame Cavity Insula	ation R-Value:	20.0	Stud Width (in):	1.5
Cavity Insulation TI	nickness (in):	5.5	Stud Depth (in):	5.5
Cavity Insulation G	rade:	I v	Framing Factor:	0.1900
Block Cavity Insula	tion R-Value:	0.0	Use Default 「	

ENERGY STAF

HERS Score

Programs	
V3.0 ENERGY	Fails
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	67

Change: +1 Target: 60

Measure	\$2,000 savings
Cumulative	\$2,000

2) Lighting

Before: Not taking credit for garage/exterior

Lighting CFL (%); 100.0		Interior			
Pin-Based FL (%):	0.0	Fixtures	Garage Fixtures(%): 0.0		

After: 100% qualifying throughout

 Note that outdoor fixtures on a photocell also qualify

Lighting			
CFL (%):	100.0	Interior	Exterior Fixtures(%): 100.0
Pin-Based FL (%):	0.0	Fixtures	Garage Fixtures(%): 100.0

HERS Score

Ξ	Programs	
	V3.0 ENERGY	Passes
	V3.0* ENERG	Fails
	V3.1 ENERGY	Fails
	Tax Credit	Fails
	DOE Zero Ene	Fails
	HERS Index	66

Change: **-1** Target: 60

3) Whole-House Ventilation

Before: Exhaust-only bath fan

- 52 CFM per 62.2-2010
- When infiltration is high, check 2013 rate

Air Lea	akage			
Ventilation	Mechanical	Exhaust Only	ASHRAE	ASHRAE
	Sensible Recovery Eff. (%)	0.0	62.2-2010	62.2-2013
	Total Recovery Eff. (%)	0.0		
	Rate (cfm)	52	52	36
	Hours/Day	24.0	24.0	24.0
	Fan Watts	9.0		
	Cooling Ventilation	Natural Ventilation		

After: Lowered rate w/ infiltration credit

• 36 CFM per 62.2-2013

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	66

Change: No change Target: 60

Measure	No cost
Cumulative	\$1,960

4) Low-Flow Water Fixtures

Before: No credit taken for water fixtures

DHW Efficiencies				
All bath faucets & showers <= 2 gpm				
All DHW pipes fully insulated >= R-3				
Plumbing Design (Enter plan	Plumbing Design (Enter plan view rectangular distance)			
Recirculation:	None (standard system)			
Farthest fix	Farthest fixture to DHW heater (ft): 95			
autocalc vertical, for conditioned floors (ft): + 10				
autocalc vertical, for uncond. bsmt (ft): + 0				
TOTAL Pipelength f	for longest DHW run (ft): 105			

After: 2 gpm bath faucets and showers

DHW Efficiencies Image: All bath faucets & showers <= 2 gpm	L		Efficiencies
All bath faucets & showers <= 2 gpm	l	DITW	Lindendes
			All bath faucets & showers <= 2 gpm

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Fails
V3.1 ENERGY	Fails
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	65

Change: -1 Target: 60

Measure	No cost
Cumulative	\$1,960

5) Water Heater

Before: 0.60 EF Gas Tank

Mechanical Equipment Properties		
Library Type: Water Heating 🗾 💌		
Equipment:	40 gal. 0.60EF Gas 💌	
Location:	n: Conditioned area	

After: 0.90 EF Instant Gas Water Heater

Mechanical Equipment Properties		
Library Type:	Water Heating	-
Equipment:	Demand-Gas 0.90EF	-
Location:	Conditioned area	•

ENERGY STA

HERS Score

Programs	
V3.0 ENERGY	Passes
V3.0* ENERG	Fails
V3.1 ENERGY	Passes
Tax Credit	Fails
DOE Zero Ene	Fails
HERS Index	60

Change: **-5** Target: 60

Cost/Savings

Measure	\$1,500 cost
Cumulative	\$460

Summary: HERS Improvements with Dollar Savings

- The Alamo
 - HERS 66 ⇔ 62
 - Savings = \$385
- The Chesapeake
 - HERS 76 ⇒ 67
 - Savings = \$1,660
- The Packard
 - HERS 66 ⇒ 60
 - Savings = \$460

There are many ways to meet the ENERGY STAR HERS Target, but some are more cost-effective than others.

To review: How HERS Raters Help Builders

Builders want to save money while meeting customer expectations to keep up sales:

- **1. Explain cost-cutting measures.** For example, advanced framing is less expensive AND more comfortable/efficient.
- 2. Think of cost savings in terms of dollars and cents. Trimming back on some measures is ok if you end up with a more cost- effective package.
- **3.** An instantly-recognized, trusted label is a plus. Saving money on construction materials helps, but don't forget other value-adds that come with ENERGY STAR partnership: free marketing & educational tools, program support, and brand recognition.

Wrap-Up

- You can send us your energy modeling files for personalized help modeling cost cuts that meet ENERGY STAR requirements.
- For any questions that we did not get to, please e-mail <u>Hillary.Tipton@icf.com</u>.
- As a reminder, RESNET will post this presentation.
- THANK YOU for attending!

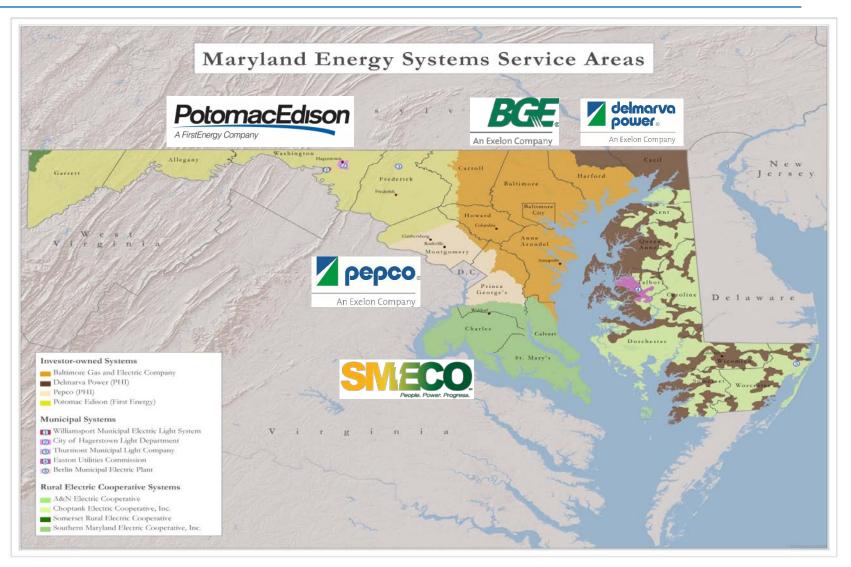
The Price Premium of ENERGY STAR Certified[®] Homes:

A Maryland Analysis

EmPOWER Maryland Act of 2008

- Reduce overall energy consumption 15%
- Utility participation

EmPOWER Maryland (2008-2014)


Reduced consumption by **2,000,000** MWh. This is equivalent to:

80,000 homes

25% of Baltimore City's consumption

2 medium sized power plants

EmPOWER Maryland Utilities

Maryland ENERGY STAR New Homes Program

- 2008:
 - ENERGY STAR New Homes comprised ~ 6% of the Maryland new homes market
 - Market penetration was 42nd in the nation
- Today:
 - ENERGY STAR New Homes now make up ≈ 40% of new homes built in Maryland in past 3 yrs
 - Now 2nd in nation for market penetration

Program Lifetime:

- ≈ 21,000 ENERGY STAR New Homes
- \$27 million in incentives
- 30,000+ MWh saved

Evolution of Program

- Program Launch:
 - Tiered incentive structure based on HERS Scores
 - Introduced 90% high efficiency lighting minimum in 2014
 - Simplified tiered structure in 2015
 - Shift away from HERS Scores to Home Type in 2015

2009-2011	2012-2014	2015	After April 1, 2015
ES v 2	ES v 3 with 2012 Code		ES v 3.1
HERS 85-81	HERS 75-71	HERS 70-66	Multifamily \$400
\$400	\$1000	\$1000	2-on-2 Condo \$550
HERS 80-76	HERS 70-66	HERS 65-61	Townhome \$750
\$800	\$1300	\$1300	
HERS 75-	HERS 65-61	HERS 60 - Below	Single Family \$1250
Below \$1000	\$1600	\$1600	

Program Benefits

ENERGY STAR® Certified Home Features

COMPLETE THERMAL ENCLOSURE SYSTEM

SEALING

pical home contains a half-mile of cracks and gaps ind walls and around windows and doors, alone with ens of holes for pipes, vents, ducts, lighting, and wiring. ling these openings with a comprehensive air sealing kage helps to significantly reduce drafts, moisture, dust, en, pests, and noise. The best time to seal these is during construction process because access to critical areas be limited once the house is completed.

RGY STAR builder partners seal the holes using caulks, ms, and other techniques—paying particular attention to te areas between the conditioned (heated or cooled) and unconditioned space of your home. One great example of this is around windows, where ENERGY STAR certified homes feature caulk or foam to seal the space between the window frame and "bridges"-uninsulated pathways that compromise the the adjacent wall framing. This is a detail that is commonly missing in many other homes and can have a real impact on your comfort and utility bills.

The energy savings from comprehensive air sealing can quickly add up when you consider all the places hot or cool

air can enter or escape from your home. Having a wellsealed home also means better air quality because dirt, pollen, pests, and moisture can't get in as easily. In addition, and moisture damage that can be caused by condensation.

Your new home is tightly sealed to reduce leaks and drafts; and thermal bridging across wells is minimized.

REDUCED THERMAL BRIDGING

whole-house comfort.

hest performance

Walls in homes are typically built with wood studs, which support the weight of the floors and roof above, help the home stand up to wind, and generally act as the structural "bones" of the home. While these components are critical to making a durable home, they often have a very low R-value (resistance to heat flow) and create thermal comfort and efficiency of the home. ENERGY STAR builder partners select one of five strategies, such as adding a continuous layer of rigid foam or minimizing excess wood studs, to minimize thermal bridging in walls.

good sealing practices help protect your home against mold

Correct levels of insulation are selected to provide Insulation is installed properly to deliver the When builders meet these rigorous requirements, you get a home with a complete thermal enclosure system—a better approach to building a better home.

- Marketing support
- Website listing
- Sales training
 - Technical training
- QA/QC
 - **Research:** Baseline and price premium studies

Price Premium Study

• Collaboration between the Maryland utilities to quantify the impact of ENERGY STAR Certification on home prices

- Evaluated Maryland home prices between 2010-2016
- Included sample of 2,723
 ENERGY STAR homes and 13,065 non-certified homes
- Regression model used to
 isolate impact of ENERGY STAR
 Certification on home value
 (hedonic regression model)

Why did we conduct this study?

- Utility Perspective
 - First steps to capture non-energy benefits
- Builder and Rater Perspective
 - Concrete answer of what is ENERGY STAR
 Certified New Home worth
- Homeowner Perspective
 - Non-energy benefits are at times more important in driving energy efficiency program for end consumers

Methodology

Characteristics Based On:

- Impact on Home Value
- Availability of Information
- Feasibility of Analysis

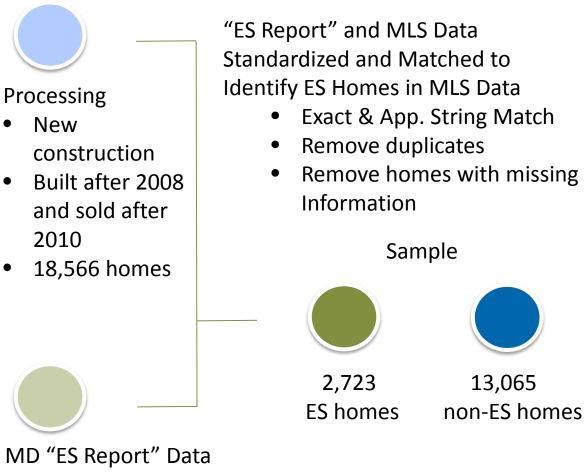
Some of the Home Characteristics Include:

- Location
- Home Type
- Date of Sale
- Sale Price
- Number of Levels
- Year Built

- New Construction
- Number Bedrooms,
 Bathrooms, Fireplaces
- Lot Size Square Footage•
- Living Area Square Footage

- Basement, Attic, Swimming Pool
- Parking
 - Water Oriented, View, or Access

Methodology


MD Homes Data from MLS/RBI

366,542 homes

Maryland Utilities

ഗ

Homes sold between 1/1/2010-3/1/2016

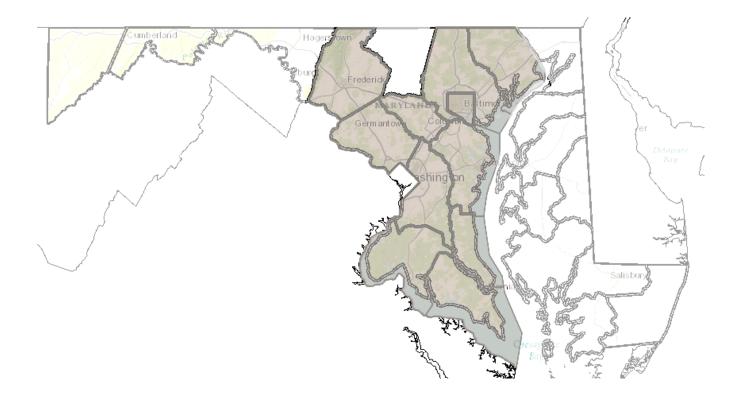
17,860 homes

•

1/1/2010-3/1/2016

Exploring the Data

54% single family homes



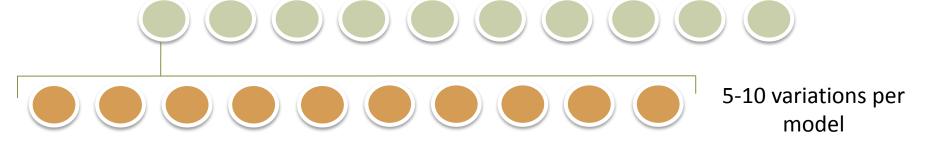
Most homes (99.5%) were sold in standard sales

Exploratory Data Analysis and Missing Data

Top 10 counties with highest number of new homes accounted for 92.2% of the sample

What's in the data and what does that mean?

Large percentage of data missing for total living area (55%) and lot size (11%)


ENERGY STAR Homes and non-ENERGY STAR Homes included in the data were comparable

However, ENERGY STAR Homes sold faster than non-ENERGY STAR Homes!

Data Analysis and Model Selection

10 Models with Different Dependent Variables

Final Model: 2G2

- Dependent Variable: Log of sale price
- Primary Independent Variable: ENERGY STAR Certification
- Model fitted separately to each year
- Include 2,811 parameters
 - Parameters only created for terms that are statistically significant at the 5% significance level for 2+ out of 5 years

Results

Model 2G2				
Year	Estimate	StdErr	tValue (T-statistic)	Probt (P-Value)
2011	0.0575	0.0647	0.8892	0.3740
2012	0.0521	0.0166	3.1322	0.0018
2013	0.0327	0.0092	3.5451	0.0004
2014	0.0271	0.0079	3.4375	0.0006
2015	0.0210	0.0078	2.6945	0.0071
2016	0.0351	0.0364	0.9649	0.3359

- Model is a good fit and there is statistically significant price premium for ENERGY STAR New Homes for years 2012-2015 at 1% level
- Not significant for 2011 and 2016 due to insufficient data
- Price premium of 2.1-5.2% for 2012-2015

What this means:

Year	Price Premium
2012	\$24,953
2013	\$15,645
2014	\$12,978
2015	\$10,077

- \$10,077-\$24,953 price premium is attributed to ENERGY STAR New Homes certification per home
- The Maryland ENERGY STAR New Homes Program has delivered 21,000 homes since 2010: \$211,617,000 - \$524,013,000 additional value generated for builders
- Study is first step, imagine quantifying other economic/market impact related to \$211-524 million dollars (job growth, regional impact, etc)

Reception

USING LESS ENERGY TO INCREASE VALUE

An ENERGY STAR® New Home helps reduce energy use up to 30% on utility bills and increases your property value by 2-5%.

The ENERGY STAR Difference

The ENERGY STAR label on your Craftmark Home means your new home meets strict efficiency quidelines set by the Environmental Protection Agency (EPA) and is third party verified. This verification ensures your home uses less electricity to provide better comfort.

Savings and Home Value Beyond providing increased savings on your utility bill. ENERGY STAR Certified homes offer a price premium. In a Maryland wide study based on 15,000+ homes, ENERGY STAR Certified Homes were compared to similar non-certified homes and found to sell for 2-5% more. This price premium would mean a difference of \$10,077-\$24,953 based on the average house which costs \$478,913.

energy

ERG

PARTNER

CraftmarkHomes.com

The ENERGY STAR label means your new home meets strict efficiency guidelines set by the Environmental Protection Agency

ARTNEF

(EPA) and is third party verified. This verification ensures your home uses less electricity to increase your utility savings and provide better comfort by:

Maintaining Consistent Temperatures

Ensuring Better Durability

All ENERGY STAR homesfeature comprehen- High efficiency heating and cooling systems, sive air sealing, quality-installed insulation, designed for optimal performance ensures and high performance windows and doors consistent temperatures in every room and which help minimize warm and cold spots in prevents things such as the unnecessary cythehome cling on and off of oversized systems.

mprovin g Indoor Air

Reducing Leaks and Drafts

A fresh-air system provides a controlled A comprehensive water management sysamount of outdoor air. Combined with a tem, including flashing, moisture barriers, high performance filter which reduces dust, and heavy duty membranes, protects roofs, pollen, and allemens. walls and foundations from moisture dam-

Providing Peace of Mind

Trained professionals perform independent inspections and testing in the certification process, so you can sleep well knowing things were done right

www.EastofMarketApts.com

An ENERGY STAR Certified Ryan home helps reduce energy use up to 30% on utility bills and increases your property value by 2-5%.

The ENERGY STAR Difference

The ENERGY STAR abel means your new Ryan Beyond providing increased savings on your utility ter comfort.

Ryan

Savings and Home Value

home meets strict efficiency guidelines set by bill ENERGY STAR Certified homes offer a price prethe Environmental Protection Agency (EPA) and mium. In a Maryland wide study based on 15,000+ is third party verified. This verification ensures homes, ENERGY STAR Certified Homes were comyour home uses less electricity to provide bet- pared to similar non-certified homes and found to sell for 2-5% more. This price premium would mean a difference of \$10,077-\$24,953 based on the average house which costs \$478,913.

es.com D y D D

